Extended circle graphs I

CHRISTOPH HUNDACK HERMANN STAMM-WILBRANDT
Institut fur Informatik 111
Universitat Bonn

Abstract

A graph (' is called an extended circle graph if it is the intersection
graph of a finite set of hyperchords of a circle. A hyperchord is defined
by the interior of a polygon which is given by a finite, ordered set H
of points on a circle. (We assume the selected points on the circle to
be numbered consecutively from 1 to n.) The class of extended circle
graphs is a generalization of a number of well-known graph classes,
eg circle graphs and trapezoid graphs and it is known under various
names. We summarize a number of results concerning class inclusions,
related graph models, and algorithms for extended circle graphs.

We introduce an efficient description for these graphs which is
linear in the input size I = 3} ey (e [H], although ¢’ may contain
O(I?) edges. This permits algorithms with running time sublinear in
IV(C)| + |[E(C)|; as an example we present a bipartation algorithm
for extended circle graphs.

1 Introduction

A graph (' is called an extended circle graph if it is the intersection graph of
a finite set of hyperchords of a circle. A hyperchord is defined by the interior
of a polygon which is given by a finite, ordered set H of points on a circle.
(We assume the selected points on the circle to be numbered consecutively
from 1 to n.)

Section 2 contains some basic definitions. Furthermore we introduce an
efficient description for extended circle graphs called a standard representa-
tion.

The class of extended circle graphs is a generalization of a number of
well-known graph classes, eg circle graphs and trapezoid graphs and it is
known under various names. In Section 3 we summarize a number of re-
sults concerning class inclusions, related graph models, and algorithms for
extended circle graphs.

In Section 4 we present the algorithm for generating a standard represen-
tation if given an extended circle graph by a list of hyperchords; the algorithm
requires running time linear in the input size I = Y pcy () |H|.

This permits algorithms for extended circle graphs with running time
sublinear in |V(C)|4|E(C)]. In Section 5 we give as an example a bipartation
algorithm for extended circle graphs with running time linear in /, although
C' may contain O([?) edges.

2 Basic definitions and data structures

2.1 Notations

Let GG be a graph, V() denoting the set of vertices of (¢ and E(G) the
set of edges of G. |V(G)| and |E(G)| are called the order and size of (¢
respectively. Let ()" be a circle with n specified points 1,...,n given in
counterclockwise order. Two or more points py,...,pr € {1,...,n} of O
with p; < pa < ... < pi, define a simple closed k—gon P in ()". The interior
of a k—gon P is denoted by I(P) = I({p1,...,px}); in case k == 2 the
interior is all of the straight-line segment p1p; leaving out p; and py. (For
technical reasons we define for a point p its interior by I({p}) = {p}.)

Definition 1 Let {p1,...,pr} be an ordered set of points on (O)™. The hy-
perchord H = {p1,...,pr} is defined by the interior of the corresponding
k—gon. Two hyperchords H, H" with I(H) == I(H') are called intersecting,
if |H| > 3. Two hyperchords H, H" with [(H) # I(H') are called intersecting,
dI(HYNT(H) £ 0.

Note that different hyperchords may possess common endpoints.

. 3 3 1 2
-?%{H and Q\\§ \ and %\\\\ﬁ / and “i\\\\\b‘“\: "?,%// and \h\\\\\\\

do not intersect do not intersect do intersect do intersect

Definition 2 Let CH be a set of hyperchords wrt ()". The graph C wrt
O™ and CH defined by V(C) = CH and E(C) = {{H,H'} | H H €
CH A Hand H intersect} is called an extended circle graph.

For each hyperchord H = {py,...,pr} the endpoints p; of H with 1 <
i < k are called intermediate endpoints of H; furthermore first(H) = p,
last(H) = pr. The length of a hyperchord H = {p1,...,pr} is given by
length(H) = last(H) — first(H). The size of a set of hyperchords C'H is
defined by size(CH) = Y gecr |H|; we consider size(C' H) as the input size
for algorithms dealing with extended circle graphs.
We assume that an extended circle graph C' is given by a list_of_list_of_integer
L. Each sublist representing a hyperchord is sorted ascendingly in the range
1,...,n with n being the number of points on the corresponding circle. Fur-
thermore we assume that n = O(|L|) and thus do not allow too many “unused
points”.

2.2 Standard representation

We consider a number to be an element of {—¢, £, +¢|¢is (positive)integer}.
The numbers —z, +¢ and +¢ are called signed versions of an integer ¢ > 1;
the sign of ¢ is —, & and + respectively.

Definition 3 Let S be a list_of-list_of-number and let {i} represent any of
{=i}, {Ee},{+i}. If for @ # 5 one of the patterns

{1}, gt o i oy oo Ut e) {e)

occurs in S this is called a crossing configuration of ¢ and j in S.

Definition 4 Let C be an extended circle graph wrt ()" and CH = {H4, ...,
H,}. A list_of list_of-number S is called a standard representation of C' if

1. for each hyperchord H; € C'H and each point p € H; we have

(a) if p== first(H;) this is represented by the list {—j} in S;

(b) if p is an intermediate endpoint of H; this is represented by the
list {5} in S;
(c) if p==last(H;) this is represented by the list {+j} in S;

2. for each hyperchord H; € C'H we have

(a) the number of the first list {j} in S has sign —;
(b) the number of the last list {j} in S has sign +;

3. for all H;, H; € V(C) there exists a crossing configuration of ¢ and j
in S, if and only if, {H;, H;} € E(C).

A standard representation S of the extended circle
graph " with V(') = {{1,3},{1,3,4},{5,6,7},
{2,5,7}} in the example is given by

S = {{_2}7 {_1}7 {_4}7 {—I_l}v {iQ}v {—I'Q}v
{4}, {3}, {£3}, {+3}, {+4}}

Theorem 1 Fvery extended circle graph possesses a standard representa-
tion.

Proposition 2 Let C' be an extended circle graph wrt ()™ and the set of
hyperchords CH = {H,...,H,}. Let H; # H; be two hyperchords of C and
a,c€ Hy, byd e Hy with a <b<c¢<d. Then I(H;) NI(H;)#0.

Proof: If [H;| == 2 choose ¢ = ¢, otherwise choose any e € H; \ {a,c}. If
|H;| == 2 choose f = d, otherwise choose any f € H;\{b,d}. Let p = @cnbd.
ac intersects bf or df in a point called ¢; bd intersects @e or ¢ in a point

called h. Then 0 # I({p,g,h}) C I(H;) N I(H;). 0

Proposition 3 Let C' be an extended circle graph wrt ()™ and the set of
hyperchords CH = {Hy,...,H,}. Let H; # H; be two hyperchords of C with
a = first(H;) == first(H) b = last(H;) == last(H;) and |H;|,|H;| > 3.
Then I(H;)NI(H;) # 0.

Proof: Choose p € H; \ {a,b} and ¢ € H; \ {a,b}. Define e = pif p == ¢
or e =ag N bpif p < q or e = @pN bq otherwise. Since a < p,q < b we have
¢ & ab and therefore () # [({a,e,b}) C I(H;) N I(H;). O

Proof (of Theorem 1): Let C be an extended circle graph wrt ()" and
the set of hyperchords CH = {Hy,..., H,.}. Define for each p € {1,...,n}
the lists

L. Highlp] = {{+i1}, {42}, ..., {+ic}}, k€ {1,...,r}, with

(a) p==last(H;;),1 <j <k
(b) High[p] is ordered by

(length(H;,), —|H;,|,4;) <iew (length(H;) |HZ,| i)
with 1 <j<j' <k
2. Medium|p] = {{£u}, {+i},... . {ti}}, k€ {1,...,r}, with

(a) p € Hi \ {firsi(H,),last(Hi)},1 < j <F;
(b) the entries of Medium[p] are in arbitrary order;

3. Low(p] = {{—i1},{—d2},..., {—u}}, ke {1,... r}, with

(a) p== first(H;;),1 <j < k;
(b) Lowl[p] is ordered by

(length(H;)), —|H;,|,i5) Ziee (length(H;), —|H;,|,5)
with 1 <j < j' <k
Concatenating the lists results in

S = High[l] o Medium[1] o Low[l] o High[2] o ... o Medium|[n] o Low|n].

Note that by definition
High[l] == Medium[l] == Medium|[n] == Low[n] == {}.

S fulfils the requirements 1(a) — (¢) of Definition 4. Due to the definition
of Low[p] via first() and Hughli] via last() and their order (for all p €
{1,...,n}) 2(a) — (b) of Definition 4 are also satisfied.

It remains to be shown that the equivalence condition 3 of Definition 4 is
also fulfilled. Assume first that there exists a crossing configuration

R S SO SO) SR

in S. We have to show {H;,H;} € E(C) which is equivalent to I(H;) N
I(H;) # . We only consider the cases

o= Ut e {H)

since the first list {¢} may be replaced by the leftmost list {¢} in S, ie {—i},
and a similar argument holds for {47}. We abbreviate the above configura-
tion by —t, 7,7, +7. We write a||b to indicate that lists {a} and {b} belong to
different endpoints of ()™ and a, b to indicate that they belong to the same
endpoint. By definition of S we have

—a|| b, —c||+d, ze||+f Va,bc,de,f.

We replace list {5} by the leftmost list to the right of {—:} and {¢}
by the rightmost list to the left of {4+7}. Thus there remain four possible
configurations to examine. In each case we prove that [(H;) N I(H;) # 0.

case —t,—j||+¢,4+j:| The assumption —i, —j||+¢, +7 contradicts 1(b) and

3(b) as well as the assumption —¢, —j||4¢, +j. Therefore we have —i||j||7|| +J
in this case and by Proposition 2 I(H;) N I(H;) # 0.

case —1, —j|| £ 7| + j: The +¢ has to exist in S to the right of 4+; and
so we have —i, —j|| £ ¢|| + j,+7 (*). The case —i|| — j|| £ ¢|| + 7, + leads to
the first case. The same applies to the case —i, —j|| £ ¢|| + j|| + . We are
left with —i, —j|| £¢||4+J, +¢. If there exists no 45 in S this contradicts 1(b)
and 3(b), else by Proposition 3 I(H;) N I(H;) # 0.

case: —i|| £ j|| + ¢, +: Since there is a —j in S it has to occur before

—1 and thus we have —j, —i|| £ j|| +¢,+j. By renaming ¢ and j we are again
at the previous case (*).

case —i|| £+ j, +¢|| + 5: S contains —j which precedes —i (and +¢ which

succeeds +j). Therefore we have —j, —i|| £+ j, +¢|| + 7, +¢ and by dropping
the two medium entries and renaming ¢ and j we end up in the first case.

Now we assume that there exists no edge between two hyperchords H;, H;,
ie I(H;)NI(H;) =0. We have to show that there exists no crossing config-
uration between 7 and j in S.

Wlog let (first(H;), —last(H;),|H;|) > (first(H;), —last(H;),|H;|)

and a = first(H;), b = last(H;) respectively. For all p € H; \ {a, b} we have
a<p<hb.
(We neglect (first(H;),—last(H;),|H;|) =i (first(H;),—last(H;),|H;|):
In case |H;| == |H;| > 3 by Proposition 3 we have I(H;) N I1(H;) # 0
contradicting the assumption. In case |H;| == |H;| == 2 the 2—gons H;
and H; are identical; Low[a] is sorted increasingly by (length(Hy), —|Hyl, k),
High[b] is sorted decreasingly by (length(Hy),—|Hy|, k); therefore there ex-
ists no crossing configuration.)

It remains to be shown that for all ¢ € H; either ¢ < a or b < ¢. Assume
that there exists a ¢ € H; : a < ¢ < b. Then we know that there also
exists either ¢” < a or ¢" > b with ¢"” € H; due to the selection of H; and
H;. ab and ¢’q" intersect and by Proposition 2 we have I(H;) N I(H;) #
contradicting the assumption. O

2.3 Data structures

A (doubly linked) list L is a sequence of items. For each item «t of L its
content is denoted by L[it]; L[et] is also called an element of L. The number
of items in L is denoted by |L|. If L = ¢ it is called the empty list. The
predecessor of the first item of L and the successor of the last item of L are
denoted by undef. The type of an element is arbitrary, eg it may be a list
itself. For simplicity list L = iy, ..., ity is also denoted by {L[it1], ..., L[it]}
and L = eby {}. Appendinglist Y = o#],... 2t tolist X = ¢ty, ..., 4t; results
in Y = cand X = ity,...,1t;,t},...,it;. This model allows the following
constant time operations on list L:

~ get the content L[it] of an item it of L;

~ get the first/last item of L;

~ get the successor/predecessor of a given item in L;
~ determine |L|;

~ append/delete elements or items to/from L;

— append list L' to L.

We assume the implementation of datatype graph to be standard by us-
ing incidence lists and providing eg constant time insertion of new edges.
The implementation of the datatype number may be realized easily by us-
ing 2-tupels, one part representing the sign (—, +,4) and the other one the
unsigned version of the number.

3 Related results

The most general way to introduce extended circle graphs is via intersection
graphs. Each graph can be regarded as an intersection graph wrt a specific
model. For extended circle graphs the corresponding model is given by the
intersection of the interior of polygons as described in Definition 2.

The class of extended circle graphs is a generalization of a number of well—
known graph classes. It contains the class of circle graphs, trapezoid graphs,
series—parallel graphs, and circular—arc graphs. M. KOEBE [5] observed that
it also includes the class of chordal graphs.

extended circle graphs

circle trapezoid circular—arc chordal series—parallel
graphs graphs graphs graphs graphs
permutation graphs interval graphs trees

Graph models similar to extended circle graphs have been introduced
independently several times under different names for a variety of purposes.

Definition 5 [2] Let G be a two-connected graph and C be a cycle of G. G
is called pseudo—hamiltonian wrt C if all components of G\ V(C') consist of
single vertices.

G.J. FisHERr, O. WING [2] used pseudo-hamiltonian graphs for a pla-
narity testing algorithm with running time O(n*). For this purpose they
developed a bipartation algorithm for pseudo—hamiltonian graphs with run-
ning time O(n?). The bipartation problem for pseudo—hamiltonian graphs is
equivalent to the one for extended circle graphs as two components H, H' of
a pseudo—hamiltonian graph have to be placed on different sides, if and only
if, the interiours of the convex hull of H, H' determined by the corresponding
set of vertices intersect. (Each component including its edges and vertices of
attachment may be viewed as a hyperchord.)

W.T. TUTTE introduced H-fragments (also called H-components or
bridges) and found a planarity criterion based on that (compare [8]). Similar
concepts concerning cycles with bridges are included in the book by S. EVEN
[1]. H.J. Voss defined overlap graphs in [10], which are (with additional re-
strictions) similar to extended circle graphs.

M. KoEBE [5],[7] has introduced the model of spider graphs which is
equivalent to the one of extended circle graphs.

As circle graphs are one of the graph classes examined best he has shown
extensions of algorithms for circle graphs to spider graphs, for instance for the
colouring problem and the computation of a maximal independent set. [6]

10

includes an equivalence criterion for spider graphs which admits a polynomial
time recognition algorithm.

The result of this paper has been proved already for circle graphs in [3]; in
that context the bipartation algorithm is used for efficient planarity testing
of hamiltonian graphs.

The following table lists a number of known algorithms for extended circle
graphs. We assume the extended circle graph ' to be given by the list of
hyperchords L (compare Section 2).

‘ algorithm /problem ‘ running time ‘ reference ‘
recognition polynomial | [6]
Maximum Independent Set O(size(L)*) | [5]
k-Colouring, k > 3 NP-complete | [9]
3-Colouring (bounded degree) polynomial | [3]
bipartation O(size(L)) this paper
determination of connected components | O(size(L)) [4]

4 Generating a standard representation

In this section we show the fundamental algorithm for extended circle graphs,
ie the generation of a standard representation of an extended circle graph
given by a list of hyperchords.

We generate a list which contains for each hyperchord entries for all its
endpoints. Each entry representing such an endpoint is a 4-tupel consisting
of the number of the endpoint, the length of the hyperchord, the size of the
hyperchord, and the number of the hyperchord.

11

Via four stable bucket we sort this list lexicographically by the four en-
tries. After that for each endpoint ¢ all incident hyperchords appear con-
secutively in the following order: First the hyperchords whose maximal end-
point is ¢ sorted ascendingly by length, second the hyperchords for which
2 1s an intermediate endpoint, and third the hyperchords whose minimal
endpoint is ¢ sorted descendingly by length. These entries are replaced by
{+h}, {£h},{—h} respectively (h denoting the number of the corresponding
hyperchord) yielding a standard representation S of C' equivalent to the one
used in the proof of Theorem 1.

Generate_Standard_Representation(list_of list_of_integer L)
{
integer ¢, h, [, p, s, n; list_of list_of_number 5; list_of integer H;
h=0; 5 = {};n=max{last(H) };
forall H € L do
{
1 h=h+1;
append (last(H),length(H),—|H|, h) to S;
3 append (first(H), —length(H),|H|,—h) to S;
forall intermediate endpoints ¢ of H do
4 append (¢,0,0, %) to S;
}
5 sort S increasingly using stable bucket sort in the range
[—h,...,h] by the tupels fourth entries;
6 sort S increasingly using stable bucket sort in the range
[—n,...,n] by the tupels third entries;
7 sort S increasingly using stable bucket sort in the range
[—(n—1),...,n — 1] by the tupels second entries;
8 sort S increasingly using stable bucket sort in the range
[1,...,n] by the tupels first entries;

{=h} if 1<0
9 replace each tupel (7,1, p, s) of S by the list { {£h} if [==0
(+h) if 150
with h = |s| resulting in S being a list_of_list_of_number;

return S

}

12

Lemma 4 Function Generate_Standard_Representation(L) returns a standard
representation S of the extended circle graph C' given by the list of hyper-
chords L.

Proof: In a standard representation S of C' the list {—¢} occurs before list
{+¢} in S for all hyperchords H; of C. If there are lists {4} they occur
between {—¢} and {+7} in S (Definition 4). This order is generated by step
(2-4) and the fourth stable bucket sort (8). The definition of the entries 2,3,4
of the 4—tupels in step (2-4) together with the three stable bucket sorts in
step (5-7) ensures the correct order of all lists containing endpoint p for all
p € {l,...,n} (compare Definition 4). Thus by the stability of the bucket
sorts in step (5-8) we receive the standard representation used in proof of
Theorem 1. O

5 Extended Circle Graph Bipartation

The algorithm decides whether an extended circle graph €' given by a list of
hyperchords L is bipartite. In order to determine a feasible bipartation of
C' we have to know which hyperchords of C' intersect and therefore must be
in different partition classes. Obviously we cannot examine all intersections
as there might be O(size(L)?) of them. Thus we have to find a number
of intersections linear in size(L), the input size, which inherit all partition
information on the hyperchords as well as possible non-bipartiteness.

First we generate a standard representation S of ' as shown in the
previous section. Now the main procedure of the algorithm is to traverse
the standard representation and to detect dependencies between the hyper-
chords. Fach dependency found leads to a modification of S, ie deleting
numbers and concatenating sublists. A sublist containing more than one el-
ement is used to represent the fact that its hyperchords have to be in the
same partition class. During the course of this procedure the conflict graph
Conflict is built up. In this graph the vertices represent the hyperchords,
the edges correspond to detected conflicts, ie hyperchords which have to be
in different classes of a bipartation. Non-bipartiteness of C' is either tracked
down during the main procedure, ie if C'onflict cannot be created, or if
Conflict is not bipartite. (Bipartiteness can be checked in time linear in

O(|V(Conflict)|) + O(|E(Conflict)]).)

13

The running time of the algorithm is proportional to the number of edges
in Conflict, which is bounded by size(L).

Generate_Conflict_Graph tries to generate a conflict graph Conflict from
the standard representation S of the extended circle graph €' given by L. It
returns either true and Con flict or false.

Generate_Conflict_Graph(list_of_list_of number 5, list_of list_of_integer L)

{

item actual,search,aux; graph Con flict;
initialize Conflict by E(Conflict) =) and
V(Conflict)={ H;|ve{l,...,|L|} };

let actual denote the first item of 5;
1 while (S is not empty)
{
while (last entry of Slactual] has sign —)

{ set actual to successor of actual in S; }
let 7 be the single element of S[actual]; /* with sign + or 4+ */
set search to predecessor of actual in S

3 while ((search # undef) and (last entry j of S[search] # —1))
{
add new edge {H;, H;} to Conflict;
if (successor aux of search in S # actual)
{ append list S[aux] to S[search]; remove aux from S; }
/™ now the successor of search in S is actual again */

[N]

set search to predecessor of search in 5
}
4 if (search == undef) return (false, Conflict);

set actual to successor of actual in S;

if (¢ has sign +)
{
remove (last) element —¢ from S[search];
if (S[search] is the empty list) remove search from S;

remove list {¢} from 5

}

return (true, Con flict);

}

14

Lemma 5 If function Generate_Conflict_Graph(S,L) returns false, then the
extended circle graph C given by list of hyperchords L with standard repre-
sentation S is not bipartite.

Proof: In a standard representation S of (' given by L —: is always con-
tained in the first list containing a signed version of ¢; this applies to all
hyperchords H; of C'. This property remains valid during the course of Gen-
erate_Conflict_Graph. While searching for a number with sign — (—:) corre-
sponding to one with sign &+ or + (z) in step (3), all last entries of lists in
between, ie the detected conflicts (Definition 4), are noted. This is done by
adding an edge between H; and the corresponding hyperchord to the graph
Conflict. All lists between the list containing —¢ and {+¢} or {£:¢} are
concatenated resulting in one single list maintaining their relative order in
S. For any feasible bipartation of C' the hyperchords H; corresponding to
the elements —j of this list have to be members of the same partition class
(not containing H;). No other conflicts between these hyperchords in C' are
possible without violating the bipartiteness of C'.

The only reason for not finding —i step (4), is that it is “hidden” in
one of the lists preceding {+i} or {£i}, ie —¢ is not the last element of its
list. Therefore in the list containing —¢ each —j succeeding —: indicates a
conflict between hyperchord H; and hyperchord H;. This shows that C is
not bipartite. a

The exampleillustrates the stopping criterion of step (4). Non-bipartiteness
of C is detected since —2 is “hidden” in {—2, —3}. The list {{—2, =3}, {42},
{+3}} is obtained from {{—1},{-2},{-3}, {+1}, {+2},{+3}}, the stan-
dard representation of C', after the first step of the algorithm.

H,
1 -2 -3 1 2 3 H,— H,
-2 H,— H,
—ﬁo\o H, H,

C=K - intermediate
3 conflict graph

15

Extended _Circle_Graph_ls_Bipartite uses Generate Standard_Representation
and Generate Conflict_Graph in order to decide whether the extended circle
graph C' given by the list of hyperchords L is bipartite.

Extended_Circle_Graph_ls_Bipartite(list_of_list_of_integer L)

{

list_of_list_of_number 5; bool ok; graph Con flict;
S = Generate_Standard_Representation(L);
(ok,Conflict) = Generate_Conflict_Graph(S, L);
if (ok == false) return false;

if (Conflict is not bipartite) return false;

return Irue;

}

Now we prove the correctness of Extended_Circle_Graph_ls_Bipartite.

Lemma 6 If Generate_Conflict_Graph(S, L) returns true and the generated
graph C'onflict is not bipartite then the extended circle graph C given by L
is not bipartite.

Proof: Conflict is isomorphic to a subgraph of C. O

Lemma 7 If Extended_Circle_Graph_Is_Bipartite(L) returns true, then the ex-
tended circle graph C' given by L is bipartite.

Proof: Colour the hyperchords of the extended circle graph €' according
to the generated partition of the vertices of Conflict. Assume this two-
colouring is not feasible. Then at least two crossing hyperchords have been
coloured the same, ie the corresponding vertices in Con flict are not con-
nected by an odd path.

The first time we deal with a pair —¢, &7 or —7, 47 in Generate Conflict_Graph
an edge in Conflict is inserted between the vertex H; and the ones repre-
senting the single elements with negative sign of lists between —¢ and +2
or +i¢ in S. (The latter are thereby pairwise connected by paths of length
2.) Then these lists of numbers are concatenated resulting in one list. Each
new removal of +j or +j (together with —j) leads to conflict edges between

16

the vertex H; and all representatives of the last elements of lists in between.
These representatives have already been connected by paths of even length
to all representatives of preceding list elements. This results in paths of odd
length between the vertex H; and every vertex representing an element of a
list between —j and +j, 47 respectively. Therefore all conflicts (ie edges)
between hyperchords in (' are detected and noted either by edges or by paths
of odd length in C'on flict, in contradiction to the assumption. a

Corollary 8 Extended_Circle_Graph_Is_Bipartite(L) returns true, if and only
if, the extended circle graph C' given by list of hyperchords L is bipartite.

Proof: This is a simple consequence of Lemmas 5, 6 and 7. O

Now we show that Generate_Conflict_Graph(S, L) runs in time linear in
size(L). The order of Conflict is equal to the order of C. Within while-loop
(2) every number is visited once. The total running time of while-loop (3) is
linear in the number of edges inserted in C'on flict as all operations in while-
loop (3) require only constant time and due to the removal of {£¢} or {+7}
together with —¢ each number ¢ with sign 4+ or + contributes to the edges
of Conflict at most once. What remains to be shown is that the number
of edges of Conflict is linear in size(L) = |S| with S being the standard
representation of C.

Lemma 9 |E(Conflict)| < size(L).

Proof: Let k = |S|—|L| denote the number of non-negative entries in .S, ie
the number of runs of the main loop (1). Denote by ¢; the number of sublists
in S and by e; the number of edges created during the :th step of the main
loop (1) of Generate_Conflict_Graph. Initially we have ¢y = |\S| and after the
completion of Generate Conflict_Graph ¢, = 0. The number of edges inserted
in Conflict at the tth step is at most the number of sublists between the
active pair of numbers (3). After step (3) these sublists are concatenated to
one list. The single element list containing the non—negative element of the
active pair of numbers is removed in step (5). Therefore e; < ¢;_1 — ¢; for
1 < < k. Now we bound e = |E(Conflict)| from above by

k k
GZZGiSZ(Ci—l—Ci) =co— ¢, = |5 =size(L). O
=1 =1

Corollary 10 Extended_Circle_Graph_ls_Bipartite(L) runs in time linear in
size(L). O

17

References

1]

2]

Even, S.: Graph Algorithms, Computer Science Press, Rockville, MD,
1979;

Fischer, G.J.,Wing, O.: Computer recognition and extraction of planar
graphs from the incidence matrix, IEFE Transactions on circuit theory,

ct-13(2) 1966, 154-163;

Hundack, C., Stamm-Wilbrandt, H.: Planar embedding of hamiltonian
graphs via efficient bipartation of circle graphs, Report [AI-TR-94-2,
Institut fir Informatik III, Universitat Bonn, 1994;

Hundack, C., Stamm-Wilbrandt, H.: Extended circle graphs II, in

preparation;

Koebe, M.: Colouring of spider graphs, in: Bodendiek, R., Henn, R.
(eds.) Topics in Combinatorics and Graph Theory, Physica, Heidelberg,
1990, 435-441;

Koebe, M.: Spider graphs — a new class of intersection graphs, unpub-
lished manuscript;

Koebe, M.: On a new class of intersection graphs, in: Nesettil, J.,
Fiedler, M. (eds.) Fourth Czechoslovakian Symposium on Combina-
torics, Graphs and Complexity, Elsevier, Amsterdam, 1992, 141-143;

Tutte, W.T.: Bridges and hamiltonian circuits in planar graphs, Aequa-
tiones Mathematicae 15, 1987, 1-33;

Unger, W.: On the k—colouring of circle-graphs, in: Cori, R., Wirsing,
M. (eds.) STACS 88, LNCS 294, Springer, Heidelberg, 1988, 61-72;

Voss, H.J.: Cycles and bridges in graphs, Kluwer Academic Publishers,
Dordrecht, 1991.

